Iris データセット

Iris データセット

Irisデータセット

 機械学習用ライブラリ scikit-learn には練習用データセットがいくつか用意されています。その中の 1 つ、Iris flower data set には、Iris (アヤメ属) に属する 3 品種、setosa (セトサ)versicolor (バージカラー)versinica (バージニカ) の特徴量測定値とクラスデータ(品種データ)が収められています。

 Iris setosa, Iris versicolor, Iris versinica
   [画像はアイキャッチも含めて Wikipedia から引用しています]
 
 今後しばらくは、この Irisデータを使ってニューラルネットワークに品種分類を学習させるので、今回はデータを読み込んで、ネットワークに入力できるようにデータ構造を整えておきます。

Irisデータの読み込みと加工

 最初に scikit-learn の datasets モジュールをインポートして、iris のデータを読み込みます。

# リストM11-A-12
import numpy as np
from sklearn import datasets

# irisデータをロード
iris = datasets.load_iris()

# irisのがくの長さ、がくの幅、花びらの長さ、花びらの幅
data_in = iris.data

# Setosa,Versicolor,Versinicaのクラスデータ
data_c = iris.target

 iris.data には、sepal length (がくの長さ)、sepal width (がくの幅)、petal length (花弁の長さ)、petal width (花弁の幅) の測定値が収められています。データの 5 行目までを表示してみます)。

# data_inを5行目までを表示
print(data_in[:5])
[[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5.  3.6 1.4 0.2]]

 iris.target はクラスデータ (品種データ) です。
 setosa = 0, versicolor = 1, virginica = 2 で区分されています。

# data_cを表示
print(data_c)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]

 ただし、このままではネットワークに入力できないので、次のコードで 1 of K (one hot) 表記に変換しておきます。

# リストM11-A-13

# data_cをone of Kに変換
data_c = np.identity(3, dtype = "int8")[data_c]

 data_c の中身を確認しておきましょう。

# 変更されたdata_cを5行目まで表示

print(data_c[:5])
[[1 0 0]
 [1 0 0]
 [1 0 0]
 [1 0 0]
 [1 0 0]]

 学習を安定させるために、data_in を「標準化」しておきます。

# リストM11-A-14

# 入力データの平均値
data_in_av = np.average(data_in, axis = 0)

# 入力データの標準偏差
data_in_sd = np.std(data_in, axis = 0)

# 入力データの標準化
data_in = (data_in - data_in_av) / data_in_sd

 最後に data_in と data_c を訓練データとテストデータに分割しておきます。

# リストM11-A-15

# インデックス配列を作成
np.random.seed(10)
idx = np.arange(len(data_c))
np.random.shuffle(idx)
idx_train = idx[idx % 2 == 0]
idx_test = idx[idx % 2 != 0]

# 入力データを訓練データとテストデータに分割
data_in_train = data_in[idx_train]
data_in_test = data_in[idx_test]

# クラスデータを訓練データとテストデータに分割
data_c_train = data_c[idx_train]
data_c_test = data_c[idx_test]

 

PythonとKerasによるディープラーニング

新品価格
¥4,190から
(2019/8/21 23:37時点)

Irisのクラス分布

 Iris のクラス分布の様子も見ておきましょう。今回は特徴量が 4 種類あるので、「がくの長さ」と「がくの幅」、「花弁の長さ」と「花弁の幅」の組合わせで 2 枚のマップを作ることにします。

 「がくの長さ」と「がくの幅」のクラス分布描画コードです。

# リストM11-A-16

# setosaの「がくの長さ」と「がくの幅」を抽出
x1 = data_in[data_c[:,0] == 1][:, 0]
y1 = data_in[data_c[:,0] == 1][:, 1]

# versicolorの「がくの長さ」と「がくの幅」を抽出
x2 = data_in[data_c[:,1] == 1][:, 0]
y2 = data_in[data_c[:,1] == 1][:, 1]

# versinicaの「がくの長さ」と「がくの幅」を抽出
x3 = data_in[data_c[:,2] == 1][:, 0]
y3 = data_in[data_c[:,2] == 1][:, 1]

# 「がくの長さ」と「がくの幅」のクラス分布
fig = plt.figure(figsize = (5, 5))
ax = fig.add_subplot(111)
ax.set_xlabel("sepal length", size = 15, labelpad = 10)
ax.set_ylabel("sepal width", size = 15, labelpad = 10)
ax.scatter(x1, y1, marker = "D", color = "green", label = "setosa")
ax.scatter(x2, y2, marker = "+", color = "darkblue", label = "versicolor")
ax.scatter(x3, y3, marker = "o", color = "darkorange", label = "versinica")
ax.legend()

plt.show()

 Iris sepal class map

 「花弁の長さ」と「花弁の幅」のクラス分布描画コードです。

# リストM11-A-17

# setosaの「花弁の長さ」と「花弁の幅」を抽出
x1 = data_in[data_c[:,0] == 1][:, 2]
y1 = data_in[data_c[:,0] == 1][:, 3]

# versicolorの「花弁の長さ」と「花弁の幅」を抽出
x2 = data_in[data_c[:,1] == 1][:, 2]
y2 = data_in[data_c[:,1] == 1][:, 3]

# versinicaの「花弁の長さ」と「花弁の幅」を抽出
x3 = data_in[data_c[:,2] == 1][:, 2]
y3 = data_in[data_c[:,2] == 1][:, 3]

# 「花弁の長さ」と「花弁の幅」のクラス分布
fig = plt.figure(figsize = (5, 5))
ax = fig.add_subplot(111)
ax.set_xlabel("petal length", size = 15, labelpad = 10)
ax.set_ylabel("petal width", size = 15, labelpad = 10)
ax.scatter(x1, y1, marker = "D", color = "green", label = "setosa")
ax.scatter(x2, y2, marker = "+", color = "darkblue", label = "versicolor")
ax.scatter(x3, y3, marker = "o", color = "darkorange", label = "versinica")
ax.legend()

plt.show()

 Iris petal class map

 がくも花弁も、セトサは他の品種とは大きく異なる特徴を示しています。バージカラーとバージニカを比較すると、がくの特徴量にはほとんど差がありませんが、花弁の特徴量の境界は比較的明瞭です。